杏彩体育官方下载(xingcai)有限公司欢迎您!

杏彩体育,面向21世纪的智能电网

作者:小编    发布时间:2024-07-18 16:20:49    浏览量:

  智能电网是一个新趋势,也是一个新概念。目前,我国的很多科研单位和企业已经开始了智能电网的研究和开发。

  面对国内火热的智能电网开发局面,天津大学余贻鑫院士认为,智能电网不是一个单纯的技术问题,它涉及许多基本理念,而国内目前在智能电网认识上的混乱恰恰发生在这些基本理念上。

  智能电网是自动的和广泛分布的能量交换网络,它具有电力和信息双向流动的特点,同时能够监测从发电厂到用户电器之间的所有元件。智能电网将分布式计算和提供实时信息的通信的优越性用于电网,并使之能够维持设备层面上即时的供需平衡。

  目前,以美国为首的西方国家正对智能电网的研究加大投入力度,在我国杏彩体育,相关研究和布局也已经启动。

  但是,智能电网程序性的和技术性的挑战是巨大的。为推进智能电网,需要长期持续的研发,需要出台旨在激励智能电网的法规,并通过开放式的方式建立国家标准和鼓励众多相关产业积极参与。

  实施智能电网的原动力主要有五点,其中前四点是电网视角的思考,最后一点是出于国家经济和产业发展视角的思考。

  近年来世界上大面积连锁停电频繁发生,损失巨大。如2003年美国东北地区大停电所造成的经济损失约60亿美元,充分暴露了基于传统电网的脆弱性。一般认为,提高系统的全局可视化程度和预警能力,以及实现自愈,是增强电网的可靠性和避免因事故引起系统崩溃的关键。进而考虑到复杂大电网对自然灾害和人为恶意攻击的脆弱性,未来的电网会成为更鲁棒的自治的和自适应的基础设施,能够通过自愈的响应减小停电范围和快速恢复供电。

  目前,世界上许多国家已把发展可再生能源技术提升到国家战略的高度。美国总统奥巴马更认为,“引领世界创造清洁能源经济的国家将引领21世纪的全球经济”。

  分布式发电是靠近负荷端的小规模电力发电技术,它能够降低成本、提高可靠性。在可再生的清洁能源中,太阳能和风能由于其在地理上天然是分布式的,因此分布式的太阳能和风能的发电技术受到广泛的重视。

  属于分布式电源的还有小型、微型燃气轮机(如冷热电联产系统,CHP),以及小规模储能和下边将介绍的需求响应等。未来的几万千瓦的微型核电也在视野当中。

  随着技术的进步,可预见未来的电网会逐渐摆脱过去单一集中式发电的模式,而转向分布式发电辅助集中式发电的模式。如丹麦的电网在上世纪80年代中期还是一个集中式的系统,而今天则成了更为分散的系统。(见图1)

  当大量的分布式电源集成到大电网中时,多数是直接接入各级配电网,使得电网自上而下都成了支路上潮流可双向流动的电力交换系统,但现时的配电网络是按单向潮流设计,不具备有效集成大量分布式电源的技术潜能。从而难以处理分布式电源的不确定性和间歇性,难以确保电网的可靠性和安全问题。

  由于现时还没有经济有效的大容量能量存储手段,致使电的发生和消费必须随时保持平衡。而电力负荷是随时间而变化的,为满足供需平衡,电力设施必须根据全年的峰荷来规划和建造。

  但由于系统处于峰荷附近的时间每年很短,所以电力资产利用率低下。美国现实电网资产的利用系数约为55%,而发电资产利用率也不高。其中占整个电网总资产75%的配电网资产的利用率更低,年平均载荷率仅约44%,浪费了大量的固定资产投入。

  调查表明:我国目前10kV配电资产利用率比美国还低。多数城市10kV配电线路和变压器的年平均载荷率低于30%;在电网出现一个主要元件故障后还可保证安全的条件下,峰荷时的线%以下。杏彩体育官网登录入口解决上述问题的办法之一,是缩小负荷曲线峰谷差。

  同时为了应对电网偶然事件和电力负荷的不确定性,电力系统必须随时保持(10%~13%)发电容量裕度(又称旋转备用),以确保可靠性和峰荷需求,这也增加了发电成本和对发电容量的需求。

  幸运的是,现实系统中存在着大量能与电网友好合作的负荷杏彩体育。如空调、电冰箱、洗衣机等电器在电力负荷高峰(电价高)的时段可以暂停使用,而适当平移到供电不紧张(电价低)的电力负荷的低谷时段再使用,帮助电网实现电力负荷曲线的削峰和填谷。

  如图2所示,在美国典型峰荷日的峰荷时刻,居民用电功率占到峰荷的30%,而其中2/3,即20%属于可与电网友好合作的负荷,其值超过占峰荷13%的旋转备用容量。如果能够提供相应的技术支撑,通过电力公司与终端用户的互动(需求响应或用电管理),则可实现电力负荷曲线的削峰填谷。

  我国城市中居民用电在年典型峰荷日的峰荷时大多占到峰荷的15%~20%,其中约有一半是可以与电网友好合作的可平移负荷。应该注意到,如果我们能消减6%~8%的峰荷,其所节约的电力资产额已是十分巨大的。更何况,商业用户和工业用户负荷,均具有与电网友好合作的潜力。

  这种需求侧用户与电网之间的友好合作,在必要时,也可取代旋转备用,支持系统的安全运行。比如,在2008年初的一天下午,美国得克萨斯州经历了风力发电突然的、未预料到的急剧下降:在3个小时里发电下降130万kW。此时一个紧急起动了的需求响应程序,使大型工业和商业用户在10分钟内恢复了大部分失去的供电,起到了对此类间歇性电源波动性缓冲的作用。这一紧急需求响应程序的前提是电网公司与用户之间预先签订了协议。

  近20年,通信和信息技术得到了长足的发展。美国在20世纪80年代,内嵌芯片的计算机化的系统、装置和设备,以及自动化生产线上的敏感电子设备的电气负载还很有限。而在今天,这部分电力负荷的比重已升至40%以上,预计2015年将超过60%,对电网的供电可靠性和电能质量提出了很高的要求。

  调查表明,每年美国企业因电力中断和电能质量问题所耗掉的成本超过1000亿美元,相当于用户每花1美元买电,同时还得付出30美分的停电损失。其中,仅扰动和断电(不计大停电)每年的损失就达790亿美元。表1给出了美国电力科学院(EPRI)对未来20~30年用户对供电可靠性需求的预测。目前的电网不仅满足不了数字化社会的这些需要,而且它在数字化技术的自身应用方面也相对落后,特别是在配电网方面。

  随着产业结构的调整和产业升级,我国会有日益增多的数字化企业对供电可靠性和电能质量提出更高的要求。

  事实上,配电网也是提高用户供电可靠性的颈瓶。调查表明,我国10kV以下电网对用户停电时间的影响占到70%~80%以上。即使减去计划停电时间,我国大城市用户年平均停电时间也大都在1个小时以上,多数为几个小时,甚至更长。而日本东京由于配电网的网络拓扑结构灵活和实现了配电自动化,其用户的年平均停电时间仅为2~5分钟; 在电网出现一个主要元件故障后还可保证安全的条件下,峰荷时的线%(如前所述我国该值小于50%)。

  5)尤其值得我们注意的是:由于技术涉猎广泛,智能电网的一个关键目标是要催生新的技术和商业模式,为经济和科技发展提供新的支撑点,实现产业。思科预言,智能电网比互联网络拥有更大的市场空间。

  智能化:具有可遥感系统过载的能力和网络自动重构,即“自愈”的能力,以防止或减轻潜在的停电;在系统需要作出人为无法实现的快速反应时,能根据电力公司、消费者和监管人员的要求,自主地工作。

  包容:能够容易和透明地接受任何种类的能量,包括太阳能和风能;能够集成各种各样已经得到市场证明和可以接入电网的优良技术,如成熟的储能技术。

  重视质量:能够提供数字化经济所需要的可靠性和电能质量(如,极小化电压的凹陷、尖峰、谐波、干扰和中断)。

  智能电网将像互联网那样改变人们的生活和工作方式,并激励类似的变革。但由于其本身的复杂性和涉及广泛的利益相关者,实现智能电网需要漫长的过渡、持续的研发和多种技术的长期共存。短期内,我们可以着眼于实现一个较为智能的电网(有人用smarter grid称呼它)。它利用已有的或不久的将来就可配置的技术,使目前的电网更有效;在提供优质电力的同时,也提供相当大的社会效益,如较小的环境影响等。

  从如上所述的原动力和总体构想可知,智能电网将从一个集中式的、生产者控制的网络,转变成大量分布式辅助较少集中式的、与更多的消费者互动的网络。它将把工业界最好的技术和理念应用于电网,如开放式的体系结构、互联网协议、即插即用、共同的技术标准、非专用化和互操作性等。事实上,其中有些已经在电网中应用。但是仅当辅以体现智能电网的双向数字通信和即插即用能力的时候,其潜能才会喷发出来。

  与智能电网相关的技术非常之广,可以把它分为三类,即智能电网技术、智能电网可带动的技术和为智能电网创建平台的技术。

  高级计量体系 (AMI)。它是一个用来量测、收集、储存、分析和运用消费者用电信息的系统。作为AMI重要组成部分之一的智能电表,事实上已成为一个多功能的传感器,将电力公司和用户紧密相连,使双方可以配合互动。若实施灵活的电能定价策略,则可以激励消费者主动地参与实时电力市场,提供需求响应。

  这种交互在后台进行,只需最低限度的人为干预,但是能够明显地节省原本会消费掉的电能。同时,AMI的实施将为电网铺设最后一段双向通信,为电网从上到下处处可观测奠定了通信基础,其技术意义十分巨大。

  图3所示为对其效益的一种估计, 可见它的效益是多方面的和巨大的。目前,北美的许多州(或省)政府机构已颁布立法条例来推动AMI技术的实施,并把AMI视为是实现智能电网的第一步。经验表明投资通常可在5~10年内回收。

  电网可视化技术和海量数据管理。在原动力1)中,我们已强调了提高全局可视化的必要,因为它可使电网运行人员获得全局的情境知晓。

  电网的可视化技术和相关的工具已应用于大电网的在线实时监控等方面。但总体上看,所获得的情景知晓还很有限。与此同时,随着智能电网的实施,也需要为电力公司和电能消费者提供情景知晓。为此需要为各级电网调度人员和消费者提供多方面的、生动的可视化界面。

  智能电网实施之后,电力公司所面对的是海量的数据,必须找到适合于海量数据管理的方法,并基于这些数据开发电网的高级应用软件,实现情景知晓和优化决策。

  国内外下一代可视化的开发都正在进行中,如美国能源部在橡树岭国家实验室的开发项目维尔德(VERDE,动态地可视化地球上的能源资源)。它通过集成实时传感器数据、天气信息和带有地理信息的电网模型,提供广域电网的知晓。它将能够查看国家层次上电网的状态,而且在需要时能在几秒内转到深入检查街道一级电网的具体细节。它将为电力公司提供有关大停电和电能质量以及洞察系统运行的快速信息。

  广域量测系统/相量测量单元(WAMS/PMU)。它可提供大范围的情境知晓,其工作可以减轻电网的阻塞和瓶颈,缩小和防范系统大停电。它同目前使用的数据采集和监视控制 (SCADA) 技术相比, 就质量而言,犹如前者向电网提供的是一个“核磁共振成像术”,而后者仅提供“X 射线”。

  SCADA通常每隔2秒或4秒测量一次,为电力系统提供稳态的观测。而WAMS/PMU可以实现每秒多次采样(如30样本/秒),所测量结果也在时间上精确同步,可为电力系统提供动态的可视化。

  分布式的智能代理(INAs)体系。 微处理器的时代之前创建的集中规划和控制的电力基础设施,在很大程度上限制了电网的灵活性,失去了效率,致使我们在安全性、可靠性等几个关键方面承担着风险。而配电网的分布式智能代理体系把配电系统分成许多片(cell),每片中有许多由片内通信连接起来的智能(以IA表示,如继电保护、分布式能源等),这些代理能够收集和交流系统信息,它们对局部控制可作出自主决策,也可以经片内的协调作出决策。同时各片之间,以及配电调度中心和输电调度中心之间也通过通信联络起来,根据整个系统的要求协调决策,实现跨地理边界和组织边界的智能控制,使整个系统具有自愈功能。

  基于分布式智能代理所开发的智能电网的核心软件,是比实时还要快的快速仿真与模拟,它为协调决策提供数学支持和预测能力。

  智能电网的四大功能,即高级计量体系(AMI)、高级配电运行(ADO)、高级输电运行(ATO)和高级资产管理(AAM)等功能,都将在分布式智能代理体系下开发。

  微电网。 微电网与“完美电力系统”的概念是密不可分的。“完美电力系统”具有向各种类型的终端用户提供所需电力的灵活性,不会失败。而智能微电网(Smart microgrids,简称微电网)及其与电力公司电网的无缝集成,是“完美电力系统”理想的结构之一。微电网是为满足单个用户或一小群用户能量需求的一种集成的解决方案,在未来分布式发电和能量存储广泛使用的情况下将会普遍存在。由于在微网中发电和消费靠得很近,而具有改善能量传输效率、可靠性、安全性、电能质量以及运行成本的潜力。微电网力求与大电网协调运行:系统正常运行时,其与电网无缝集成;遇到紧急情况,它可以自适应孤岛化运行。从用户的角度看,微电网使他们能够掌握自己能量命运,而不是依赖于单一的提供者。但是,较高的成本可能使微电网近期内只能在要害和关键部门应用。

  可见,智能电网将加强电力交换系统的方方面面,包括发电、输电、配电和消费等。仅从如上罗列的几种智能电网的技术,我们就会发现,它将提供大范围的情境知晓,其工作可以减轻电网的阻塞和瓶颈,缩小乃至防止大停电;使电力公司可通过双向的可见性,倡导、鼓励和支持消费者参与电力市场和提供需求响应;为电网运行人员提供更好“ 粒度” 的系统可观性,使他们能够优化潮流控制,并使电网具有自愈和事故后快速回复的能力;大量集成和使用分布式发电特别是可再生清洁能源发电;为消费者提供机会,使他们能以前所未有的程度积极参与能源选择。

  智能电网作为一个平台,可推动和促进创新,使许多新技术可行,为它们的发展提供机会,并形成产业规模。举例来说,智能电网可使人们:广泛地使用插入式电动汽车;实现大规模能量存储;一天24小时使用太阳能;无缝地集成风能等可再生能源;选择自己的电源和用电模式;促进节能楼宇的开发。

  需要澄清的是,这些技术本身不属于智能电网的范畴,而是智能电网可带动和促进的技术。智能电网技术所包含的是,那些能够集成、与之接口和智能控制这些设备的技术。智能电网的最终成功取决于这些设备和技术是否能够有效地吸引和激励广大的消费者。

  集成的通信技术。基于安全和开放式的通信体系结构,为系统中每一节点都提供可靠的双向通信,以便实现对电网中每一个成员的实时信息交换和控制,并确保网络安全和信息的保密性、完整性和可用性。

  传感和测量技术。用以支持系统优化运行、资产管理和更快速、更准确的系统响应,例如远程监测、分时电价和需求侧管理等。

  完善的接口和决策支持。 用以增强人类决策,使电网运行和管理人员对系统的内在问题具有清晰的了解。

  智能电网的效益可以归结为:电能的可靠性和电能质量提高方面的收益;电力设备、人身和网络安全方面的收益;能源效率收益;环境保护和可持续发展的收益以及直接经济效益。

  智能电网为电力公司可带来的直接经济效益, 包括提高可靠性、削减运行费用、提高资产利用率和电网效率等。智能电网的关键是利用各种技术、资源和市场机制以实现高效。据美国能源部的报告:“智能电网的功能将纾缓阻塞和提高资产的利用率,在其实现后,估计通过美国现有的能源走廊可多送 50%~300%电力”。

  长远来看,智能电网是电网最经济的建设方案。美国电科院在2004年对其后20年在美国实现智能电网成本所作的初步估算(以2002年美元的价值计)是,总成本为1650亿美元(其中输电占380亿美元,配电和用户参与占1270亿美元),效益为6380亿~8020亿美元,效益与成本比为4:1~5:1。作为比较,实施智能电网平均每年的投资约为83亿美元,而按目前传统的电网建设模式,美国每年约需投资180亿美元。

  由于涉及广泛的技术领域并有大量的消费者参与,智能电网的直接经济效益,也包括通过加快把众多的智能设备和各种可行的创新技术引进到电能的生产、分配、存储和应用当中来,带动众多产业发展。这里所谓的智能设备,是指基于计算机或微处理器的所有设备,包括、远程终端单元(RTUs)和智能电子设备(IEDs)。它既包括电网的电力设备,如开关、电容器或断路器,又包括在家庭、楼宇和工业设施中的电力设备。

  插电式的混合动力汽车 (PHEVs)是一个创新技术的绝好例子。美国预计它的推广应用“将每日减少石油消耗 620 万桶,占目前进口量的 52%”。在节省成本、改善环境的同时,可在每天的非高峰负荷时间充电,而在用电高峰期对电网提供支持,起到削峰填谷的作用。

  首先,智能电网的实施所面临的挑战是巨大的。这不仅是由于它涉及广泛的利益相关者,其组织、研发和实施均很复杂,而且需要人们转变传统的电网理念。智能电网的性质决定其参与者应不局限于电力公司、电力设备厂商,还应包括广大消费者和众多其他产业。需要通过开放式的方式由国家制定相应的政策和标准,以鼓励和支持众多企业的参与。

  其次,智能电网是一个不断发展的目标。需要进行长期的持续研究,以预测不断变化的需求和评估不断变化的收益和成本。在实施智能电网的时候需要时时刻刻地考虑:“我们所做的工作是否适用于市场?是否可激励用户参与?是否可实现资产优化?是否能够获得高效运行?”电力公司和监管机构应该持续地向消费者展示智能电网的效益最终是会超过其成本的。

  第三,需要出台旨在开放电力市场和激励电力公司智能电网投资的新法规。其中包括实施分时或实时电价,使“电能”的商品市场价值得到合理的体现;制定鼓励分布式电源卖电回电网的政策,如分步式洁净能源的上网电价(feed in tariff)政策;保证电力公司智能电网投资成本回收的政策。

  总之,智能电网将把一个集中式的、生产者控制的电网,转变成大量分布式辅助较少集中式的和与更多的消费者互动的电网。其变迁的过程,必将改变行业的整个业务模型,且对所有利益相关者都有利。

  在我国实施智能电网发展战略,不仅能使我们获得高安全、高可靠、高质量、高效率和价格合理的电力供应,还能提高国家的能源安全、改善环境、推动可持续发展,同时能够激励市场与创新,从而提高国家的国际经济竞争力。

  余贻鑫 中国工程院院士、天津大学教授,从事电力大系统安全监视、防御与控制,城市配网分析、规划与仿真和智能电网等方面的研究。

  栾文鹏 加拿大卑诗省注册工程师,IEEE高级会员,从事电力系统规划分析、配电自动化、智能电网和智能抄表体系等方面的工作。

推荐新闻

关注官方微信